A Bayesian Rule for Adaptive Control based on Causal Interventions

نویسندگان

  • Pedro A. Ortega
  • Daniel A. Braun
چکیده

Explaining adaptive behavior is a central problem in artificial intelligence research. Here we formalize adaptive agents as mixture distributions over sequences of inputs and outputs (I/O). Each distribution of the mixture constitutes a ‘possible world’, but the agent does not know which of the possible worlds it is actually facing. The problem is to adapt the I/O stream in a way that is compatible with the true world. A natural measure of adaptation can be obtained by the KullbackLeibler (KL) divergence between the I/O distribution of the true world and the I/O distribution expected by the agent that is uncertain about possible worlds. In the case of pure input streams, the Bayesian mixture provides a well-known solution for this problem. We show, however, that in the case of I/O streams this solution breaks down, because outputs are issued by the agent itself and require a different probabilistic syntax as provided by intervention calculus. Based on this calculus, we obtain a Bayesian control rule that allows modeling adaptive behavior with mixture distributions over I/O streams. This rule might allow for a novel approach to adaptive control based on a minimum KLprinciple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Minimum Relative Entropy Principle for Learning and Acting

This paper proposes a method to construct an adaptive agent that is universal with respect to a given class of experts, where each expert is designed specifically for a particular environment. This adaptive control problem is formalized as the problem of minimizing the relative entropy of the adaptive agent from the expert that is most suitable for the unknown environment. If the agent is a pas...

متن کامل

Design of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System

Sometimes conventional feedback controllers may not perform well online because of the variation in process dynamics due to nonlinear actuators, changes in environmental conditions and variation in the character of the disturbances. To overcome the above problem, this paper deals with the designing of a controller for a second order system with Model Reference Adaptive Control (MRAC) scheme usi...

متن کامل

A Study on the Causes of Corruption Control at the Macro Level Based on Fuzzy Logic

Corruption as one of the realities of today's society has had unprecedented growth in the administrative, political and economic systems of the world and according to the International Transparency Institute, no region or country in the world is immune to corruption. In this article, with theoretical speculations, we are looking for a comparative study of the necessary and sufficient conditions...

متن کامل

Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm

This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...

متن کامل

Adaptive Control of Machining Process Using Electrical Discharging Method (EDM) Based on Self-Tuning Regulator (STR)

In order to improve the optimal performance of a machining process, a booster to improve the serve control system performance with high stability for EDM is needed. According to precise movement of machining process using electrical discharge (EMD), adaptive control is proposed as a major option for accuracy and performance improvement. This article is done to design adaptive controller based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0911.5104  شماره 

صفحات  -

تاریخ انتشار 2009